Effect of alternating day and night temperature on short day-induced bud set and subsequent bud burst in long days in Norway spruce
نویسندگان
چکیده
Young seedlings of the conifer Norway spruce exhibit short day (SD)-induced cessation of apical growth and bud set. Although different, constant temperatures under SD are known to modulate timing of bud set and depth of dormancy with development of deeper dormancy under higher compared to lower temperature, systematic studies of effects of alternating day (DT) and night temperatures (NT) are limited. To shed light on this, seedlings of different provenances of Norway spruce were exposed to a wide range of DT-NT combinations during bud development, followed by transfer to forcing conditions of long days (LD) and 18°C, directly or after different periods of chilling. Although no specific effect of alternating DT/NT was found, the results demonstrate that the effects of DT under SD on bud set and subsequent bud break are significantly modified by NT in a complex way. The effects on bud break persisted after chilling. Since time to bud set correlated with the daily mean temperature under SD at DTs of 18 and 21°C, but not a DT of 15°C, time to bud set apparently also depend on the specific DT, implying that the effect of NT depends on the actual DT. Although higher temperature under SD generally results in later bud break after transfer to forcing conditions, the fastest bud flush was observed at intermediate NTs. This might be due to a bud break-hastening chilling effect of intermediate compared to higher temperatures, and delayed bud development to a stage where bud burst can occur, under lower temperatures. Also, time to bud burst in un-chilled seedlings decreased with increasing SD-duration, suggesting that bud development must reach a certain stage before the processes leading to bud burst are initiated. The present results also indicate that low temperature during bud development had a larger effect on the most southern compared to the most northern provenance studied. Decreasing time to bud burst was observed with increasing northern latitude of origin in un-chilled as well as chilled plants. In conclusion, being a highly temperature-dependent process, bud development is strongly delayed by low temperature, and the effects of DT is significantly modified by NT in a complex manner.
منابع مشابه
A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers.
Growth in perennial plants possesses an annual cycle of active growth and dormancy that is controlled by environmental factors, mainly photoperiod and temperature. In conifers and other nonangiosperm species, the molecular mechanisms behind these responses are currently unknown. In Norway spruce (Picea abies L. Karst.) seedlings, growth cessation and bud set are induced by short days and plants...
متن کاملDormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment.
Ecophysiological models predicting timing of bud burst were tested with data gathered from 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing in northern Sweden in whole-tree chambers under climatic conditions predicted to prevail in 2100. Norway spruce trees, with heights between 5 and 7 m, were enclosed in individual chambers that provided a factorial combination of ambient (36...
متن کاملAnatomy and morphology in developing vegetative buds on detached Norway spruce branches in controlled conditions before bud burst.
We studied the light and stereomicroscopic structure of developing vegetative buds from a 16-year-old Norway spruce [Picea abies (L.) Karst.] of southern Finnish origin in relation to temperature sum and to externally visible changes in the buds before and during bud burst in forcing conditions. Branches were collected on 17 January and transferred to the greenhouse where they were first subjec...
متن کاملMolecular dissection of an adaptive epigenetic memory mechanism in norway spruce
In Norway spruce, environmental conditions during the reproduction can greatly influence progeny performance. We found that the temperature during post meiotic megagametogenesis (zygotic embryogenesis) and seed maturation shift the growth cycle program of the embryos in the seeds, resulting in significant and long lasting phenotypic changes in the progeny. Traits that are affected include the t...
متن کاملTwilight far-red treatment advances leaf bud burst of silver birch (Betula pendula).
Bud development of boreal trees in spring, once initiated, is driven by ambient air temperature, but the mechanism triggering bud development remains unclear. We determined if some aspect of the diurnal or seasonal light regime influences initiation of bud burst once the chilling requirement is met. We grew 3-year-old birch plantlets cloned from a mature tree of boreal origin in light condition...
متن کامل